[1]馬立強,殷榕,王亮,等.準噶爾盆地頭屯河組低電阻率油層束縛水飽 和度確定方法司[J].測井技術,2019,43(02):122-128.[doi:10.16489/j.issn.1004-1338.2019.02.003]
 SIMA Liqiang,YIN Rong,WANG Liang,et al.Determining Methods of the Irreducible Water Saturation of Low-resistivity Oil Layers in Toutunhe Formation, Junggar Basin[J].WELL LOGGING TECHNOLOGY,2019,43(02):122-128.[doi:10.16489/j.issn.1004-1338.2019.02.003]
點擊復制

準噶爾盆地頭屯河組低電阻率油層束縛水飽 和度確定方法司()
分享到:

《測井技術》[ISSN:1004-1338/CN:61-1223/TE]

卷:
第43卷
期數:
2019年02期
頁碼:
122-128
欄目:
處理解釋
出版日期:
2019-06-20

文章信息/Info

Title:
Determining Methods of the Irreducible Water Saturation of Low-resistivity Oil Layers in Toutunhe Formation, Junggar Basin
文章編號:
1004-1338(2019)02-0122-07
作者:
馬立強1 殷榕1 王亮12 王瓊3 唐松4
(1.西南石油大學地球科學與技術學院, 四川 成都 610500; 2.中國石油大學地球物理與 信息工程學院, 北京 102249; 3.西南石油大學電氣信息學院, 四川 成都 610500; 4.西南油氣田分公司川中油氣礦, 四川 遂寧 834000)
Author(s):
SIMA Liqiang1 YIN Rong1 WANG Liang12 WANG Qiong3TANG Song4
(1. College of Geosciences & Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China; 2. College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, China; 3. College of Electrical Engineering and Information, Southwest Petroleum University, Chengdu, Sichuan 610500, China; 4. Central Sichuan Mining District, Southwest Oil and Gas Field Company, PetroChina, Suining, Sichuan 834000, China)
關鍵詞:
測井解釋 低電阻率 油層 束縛水飽和度 核磁共振 壓汞 半滲透隔板 毛細管壓力
Keywords:
log interpretation low-resistivity oil layer irreducible water saturation NMR mercury intrusion semi-permeable plate capillary pressure
分類號:
P631.84
DOI:
10.16489/j.issn.1004-1338.2019.02.003
文獻標志碼:
A
摘要:
準噶爾盆地低電阻率油層發育,高束縛水飽和度是低電阻率油層的主要成因之一; 低電阻率油層束縛水飽和度的準確確定是明確油層低電阻率成因并確定含油飽和度的關鍵。常用束縛水飽和度確定方法結果差異較大,束縛水飽和度的準確確定存在困難。以準噶爾盆地阜東斜坡區頭屯河組儲層為例,實驗對比了核磁共振分析法、壓汞毛細管壓力曲線法、半滲透隔板毛細管壓力曲線法所確定的束縛水飽和度。巖心實驗結果對比表明,核磁共振分析法、壓汞毛細管壓力曲線法確定的束縛水飽和度均小于半滲透隔板法確定的束縛水飽和度。核磁共振分析法中實驗所用離心力遠大于成藏時油運移的驅替力,造成部分束縛水被離心出來; 壓汞法在實驗過程中,巖樣中的黏土束縛水被驅替出來。這2種方法測量的束縛水飽和度均偏小。半滲透隔板法由于充分模擬了油氣運移過程中非潤濕相(油氣)驅替潤濕相(地層水)的過程,其中的黏土束縛水未被驅替,與油層實際情況相符,可用于驗證另外2種方法的可靠性。
Abstract:
Low-resistivity oil layers are well developed in Junggar Basin. High irreducible water saturation is one of the main causes for low-resistivity oil layers. How to accurately determine irreducible water saturation is the key to determine the origin of low-resistivity layers and oil saturation. Different methods commonly used provide different results, so that it is hard to determine accurate irreducible water saturation. Taking the Toutunhe Formation reservoir in the Fudong slope of Junggar Basin as an example, NMR, mercury intrusion and semi-permeable plate methods were compared through core experiments, and the results indicate that the irreducible water saturation determined by either NMR or mercury intrusion is less than that determined by semi-permeable plate method. During the NMR experiment, it was found that the centrifugal force was far greater than the displacement force for oil migration during the process of hydrocarbon accumulation, which resulted in the centrifugation of some irreducible water. During the mercury intrusion experiment, the irreducible water in the clay in the rock sample was displaced. Therefore, the irreducible water saturation measured by any of the two methods is smaller than the actual. The semi-permeable plate method fully simulated the process of non-wetting phase(oil and gas)displacing wetting phase(formation water)during oil and gas migration, and the irreducible water in clay was not displaced, which is consistent with the actual situation. The semi-permeable plate method can verify the reliability of the other two methods.

參考文獻/References:

[1] 李征西, 莫修文. 低電阻率油氣儲層測井解釋方法研究 [J]. 吉林大學學報(地球科 學版), 2006(增刊2): 159-161. [2] 穆龍新, 田中元, 趙麗敏. A油田低電阻率油層的機理研究 [J]. 石油學報, 2004, 25(2): 69-73. [3] 中國石油勘探與生產公司. 渤海灣地區低電阻率油氣層測井技術與解釋方法論文集 [M]. 北京: 石油工業出版社, 2000. [4] ROBERT H. Cenozoic tectonic of SE Asia and Australasia [C]∥ Indonesian Petroleum Association Proceedings of the Petroleum Systems of SE Asia and Australasia Conference, 1997: 47-62. [5] 杜旭東, 顧偉康, 周開鳳, 等. 低電阻率油氣層成因分類和評價及識別 [J]. 世界地 質, 2004, 23(3): 255-260. [6] 羅興平, 蘇東旭, 王振林, 等. 核磁共振測井在低電阻率油層評價中的應用: 以準噶 爾盆地阜東斜坡頭屯河組為例 [J]. 新疆石油地質, 2017, 38(4): 470-476. [7] 孫建孟, 陳鋼花, 楊玉征, 等. 低電阻率油氣層評價方法 [J]. 石油學報, 1998, 19(3): 83-88. [8] 張松揚. 識別低電阻率氣層的一種特征參數判別法 [J]. 測井技術, 1995, 19(6): 428-434. [9] 歐陽健, 王貴文, 吳繼余, 等. 測井地質分析與油氣層定量評價 [M]. 北京: 石油工 業出版社, 1999. [10] 白玉玲, 陳滿朝, 姚萍, 等. 低電阻率油氣層測井解釋方法研究及應用 [J]. 承德 石油高等專科學校學報, 2001, 3(3): 4-5. [11] 姚軍鵬. 低電阻率砂巖氣層測井評價方法及應用研究: 以川中須家河組氣藏為例 [D]. 成都: 西南石油大學, 2011. [12] 黃布宙, 李舟波, 莫修文, 等. 復雜泥質砂巖儲層測井解釋模型研究 [J]. 石油物 探, 2009, 48(1): 40-47. [13] 中國石油勘探與生產分公司. 低電阻率油氣藏測井評價技術及應用 [M]. 北京: 石 油工業出版社, 2009. [14] 歐陽健, 毛志強, 修立軍, 等. 測井低對比度油層成因機理與評價方法 [M]. 北京: 石油工業出版社, 2009. [15] MAO Z Q, KUANG L C, XIAO C W, et al. Identification and evaluation of low resistivity pay zones by well logs and the petrophysical research in China [J]. Petroleum Science, 2007, 4(1): 41-48. [16] 張沖, 張超謨, 張占松, 等. 黏土束縛水對壓汞毛細管壓力曲線的影響及校正 [J]. 科技導報, 2014, 32(2): 44-49. [17] 龔國波, 孫伯勤, 劉買利, 等. 巖心孔隙介質中流體的核磁共振弛豫 [J]. 波譜學 雜志, 2006, 23(3): 379-395. [18] 胡法龍, 周燦燦, 李潮流, 等. 核磁共振測井構建水譜法流體識別技術 [J]. 石油 勘探與開發, 2016, 43(2): 244-252. [19] 王志戰, 李新, 魏楊旭, 等. 頁巖油氣層核磁共振評價技術綜述 [J]. 波譜學雜志, 2015, 32(4): 688-698. [20] 王志戰, 許小瓊. 利用核磁共振錄井技術定量評價儲層的分選性 [J]. 波譜學雜志, 2010, 27(2): 214-220. [21] 朱林奇, 張沖, 石文睿, 等. 結合壓汞實驗與核磁共振測井預測束縛水飽和度方法 研究 [J]. 科學技術與工程, 2016, 16(15): 22-29. [22] 蘇俊磊, 王艷, 孫建孟. 應用可變T2截止值確定束縛水飽和度 [J]. 吉 林大學學報(地球科學版), 2010, 40(6): 1491-1495. [23] 王翼君, 唐洪明, 鄭馬嘉, 等. 核磁共振法表征碳酸鹽巖孔隙結構及束縛水飽和度 的局限性: 基于實驗分析 [J]. 海相油氣地質, 2018, 23(3): 89-96. [24] LIAMBIASE J J. The framework of African rifting during the Phanerozoic [J]. Journal of African Earth Sciences, 1989, 8(2): 182-190. [25] 張有瑜. 黏土礦物與黏土礦物分析 [M]. 北京: 海洋出版社, 1990. [26] WANG L, MAO Z Q, SUN Z C, et al. Cation exchange capacity(QV) estimation in shaly sand reservoirs: case studies in the Junggar Basin, Northwest China [J]. Journal of Geophysics & Engineering, 2015, 12(5): 745. [27] 馮進, 孫友. 核磁共振測井T2截止值的確定方法 [J]. 中國海上油氣, 2008, 20(3): 181-183. [28] 申輝林, 朱偉峰, 劉美杰. 核磁共振錄井T2譜截止值確定方法及其適應 性研究 [J]. 錄井工程, 2010, 21(2): 39-42. [29] 國家發展和改革委員會. 巖樣核磁共振參數實驗室測量規范: SY/6490 [S]. 2007. [30] 何更生. 油層物理 [M]. 北京: 石油工業出版社, 1994. [31] JUHASZ I. The Central role of Q2譜截止值確定方法及其適應性研究 [J]. 錄井工程, 2010, 21(2): 39-42. [29] 國家發展和改革委員會. 巖樣核磁共振參數實驗室測量規范: SY/6490 [S]. 2007. [30] 何更生. 油層物理 [M]. 北京: 石油工業出版社, 1994. [31] JUHASZ I. The Central role of b>v and formation-water salinity in the evaluation of shaly formations [C]∥SWPLA 20th annual logging symposium, Corpus, TX, 1979.

相似文獻/References:

[1]趙軍龍,李甘,李傳浩,等.鄂爾多斯盆地Z區長81儲層流體快速識別技術研究[J].測井技術,2012,36(05):485.
 ZHAO Junlong,LI Gan,LI Chuanhao,et al.Research on the Fast Identification Technique about Fluid Property of Chang 81 Reservoirs at Z Block in Ordos Basin[J].WELL LOGGING TECHNOLOGY,2012,36(02):485.
[2]關麗.偶極子聲波測井在羅家地區沙三段泥頁巖儲層評價中的應用[J].測井技術,2012,36(05):495.
 GUAN Li.Application of Dipole Acoustic Logging to Shale Reservoir Evaluation of Luojia Area[J].WELL LOGGING TECHNOLOGY,2012,36(02):495.
[3]趙永剛,冉利民,吳非.螺紋井眼測井曲線頻域濾波校正[J].測井技術,2012,36(05):499.
 ZHAO Yonggang,RAN Limin,WU Fei.Frequency Domain Filtering Correction of Log Data from a Corkscrew Borehole[J].WELL LOGGING TECHNOLOGY,2012,36(02):499.
[4]李山生,黃質昌,杜蕊,等.WaxmanSmits模型中參數B和QV計算方法研究[J].測井技術,2012,36(03):244.
 LI Shansheng,HUANG Zhichang,DU Rui,et al.Study on Computational Methods of Parameter B and QV in WaxmanSmits Model[J].WELL LOGGING TECHNOLOGY,2012,36(02):244.
[5]陳明江,任興國.含瀝青儲層的測井識別及評價[J].測井技術,2012,36(03):272.
 CHEN Mingjiang,REN Xingguo.Log Identification and Evaluation for Bitumenbearing Reservoir[J].WELL LOGGING TECHNOLOGY,2012,36(02):272.
[6]程玉梅,張小剛,魏國.介電掃描測井技術在長慶油田的應用[J].測井技術,2012,36(03):277.
 CHENG Yumei,ZHANG Xiaogang,WEI Guo.Application of Dielectric Scanner Logging in Changqing Oilfield[J].WELL LOGGING TECHNOLOGY,2012,36(02):277.
[7]孫建孟,閆國亮.滲透率模型研究進展[J].測井技術,2012,36(04):329.
 SUN Jianmeng,YAN Guoliang.Review on Absolute Permeability Model[J].WELL LOGGING TECHNOLOGY,2012,36(02):329.
[8]宋延杰,么麗娜,徐廣田,等.長垣地區低孔隙度低滲透率砂巖儲層中連通導電模型的應用[J].測井技術,2012,36(04):345.
 SONG Yanjie,YAO Lina,XU Guangtian,et al.Study on Connectivity Model for Low Porosity and Permeability Sand Reservoirs in Daqing Placanticline[J].WELL LOGGING TECHNOLOGY,2012,36(02):345.
[9]張麗華,潘保芝,劉思慧,等.梨樹斷陷東南斜坡帶砂礫巖巖性識別方法研究[J].測井技術,2012,36(04):370.
 ZHANG Lihua,PAN Baozhi,LIU Sihui,et al.On Lithology Identification Methods of Glutinite in Southeast Ramp Region of Lishu Fault Depression[J].WELL LOGGING TECHNOLOGY,2012,36(02):370.
[10]張盼,馮吉坤,李雪磊,等.火山巖中CO2儲層的自動識別[J].測井技術,2012,36(04):373.
 ZHANG Pan,FENG Jikun,LI Xuelei,et al.Automatic Identification of CO2Bearing Beds in the Volcanic Reservoir[J].WELL LOGGING TECHNOLOGY,2012,36(02):373.
[11]麻平社,張旭波,韓艷華,等.姬塬-白豹地區低電阻率油層成因分析及解釋方法[J].測井技術,2006,30(01):84.
 MA Ping-she~(),ZHANG Xu-bo~,HAN Yan-hua~.Origin Analysis & Interpretation Method of Low Resistivity Oil Reservoir in JiyuanBaibao Zone[J].WELL LOGGING TECHNOLOGY,2006,30(02):84.
[12]王翠平,潘保芝,陳剛.利用壓汞資料評價低電阻率油層含水飽和度[J].測井技術,2013,37(02):166.
 WANG Cuiping,PAN Baozhi,CHEN Gang.Evaluation of Water Saturation in Low Resistivity Reservoir Using Mercury Injection Data[J].WELL LOGGING TECHNOLOGY,2013,37(02):166.
[13]徐炳高,李陽兵,季鳳玲,等.川西致密碎屑巖低電阻率氣層成因分析與 測井識別[J].測井技術,2014,38(02):139.[doi:10.3969/j.issn.1004-1338.2014.02.009]
 XU Binggao,LI Yangbing,JI Fengling,et al.The Genesis Analysis and Logging Identification for Tight Clastic Rock with the Low-resistivity Gas in Western Sichuan[J].WELL LOGGING TECHNOLOGY,2014,38(02):139.[doi:10.3969/j.issn.1004-1338.2014.02.009]
[14]吳見萌,朱國璋.巨型整裝孔隙-孔洞型碳酸鹽巖疑難油層解析[J].測井技術,2015,39(02):175.[doi:10.16489/j.issn.1004-1338.2015.02.009]
 WU Jianmeng,ZHU Guozhang.Difficult Analyses of Porehole Type Carbonate Oil Reservoir in Giant Monoblock Oilfield[J].WELL LOGGING TECHNOLOGY,2015,39(02):175.[doi:10.16489/j.issn.1004-1338.2015.02.009]

備注/Memo

備注/Memo:
(修改回稿日期: 2019-01-08 本文編輯 余迎)基金項目: 四川盆地大型碳酸鹽巖氣田開發示范工程(2016ZX05052); 國家自然基金項目“頁巖氣儲層微觀孔隙結構連續定量表征與含氣量評價”(41504108) 第一作者: 司馬立強,男,1961年生,教授,從事油氣測井方法、解釋及地質應用方面的科研與教學工作。E-mail:[email protected]
更新日期/Last Update: 2019-06-20
大圣捕鱼免费安装 闲聊红包快乐十分 四川时时爱乐 手机看开奖结果直播 分分赛app 体彩店可以买nba吗 甘肃快3开奖查询 58123小鱼儿开奖 重庆幸运农场开奖现场 今期最佳特马资料 赛车开奖记录结果大小单双路